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Abstract

In ocean and climate modelbgtsimulation of uppencean temperature and salinity depends on
mixing parameterizatiofor ocean surface boundary layer turbulertdsting mixing
parameterizatiomarebased on physical principlegth empirical parameters.dwever, they are
still imperfect leading to biases in the simulation of physical states in the upper. dcdais
study, we explore the use thie databased machine learningchniquespecifically, adeep
neural network modefor the effects of vertical mixing the ocean surface boundary layEne
model is trained usingrocessorientedsimulations of the uppeyceanturbulencedriven by
realisticforcing conditions at midlatitude ocean climate statioviz. the OceanStation Papa.
Thedeep neural netwonkodel outperforms traditionghysicsbasedparameterizationthat
relate the mixing effestto surface forcing using deterministic formul@bedeep neural
networkmodel is also used to explareo currentlydebated issues in the development of
physicsbasedmixing parameterizations, vitherepresentation of wave forcirand the history

of forcing conditions

1. Introduction
Ocean surface boundary layer (OSBlwpulence plagan important role inthe ocean
environment andlobal climatelt mediategherate ofexchangef heat and materialsetween
the atmosphere and the interior ocgag.,Salee et al. 2013; Liang et al. 2Q18ontrols the
effect of the ocean aime atmosphere bygeterminingthetemperaturef the sea surfade.g.,
Chen et al. 199/Richards et al. 20Q9modulates ocean ecosystem by setting the physical and
chemical environmerdf theeuphotic zonge.g., Taylor and Ferra2011], andalterthe
dispersion andransport of pollutants thenearsurfaceoceane.g., Liang et al. 2018nd 2021
Kukulka 2020] With continued efforts using advanced observational techniques and high
fidelity computer simulations, it is now understood that OSBL turbulengemarily driven by
three processat the sea surface, viwind [e.g., Skyllingstad et al. 199%eatingéooling[e.qg.,
Li et al. 2005; Pearson et al. 20,01&hd ocean surface gravity waye® . g . , D6Asaro
Qiao et al. 2004 It is alsoalteredby other factors includingensity stratificatiofPrice and
Sundermeyer 19991 h e eaatidn[hid et al. 2018]the depth of the water column [e.qg.,
TejadaMartinez and Grosch 200¥an et al. 202], largerscale horizontal density gradigfian
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et al. 2018nd 202D and lateral currents such as tidald submesoscateirrents [e.g.,
Hamlington et al. 2014; Sullivan and McWilliams 20Xuan and Liang 2031

In hindcast/forecast ocean and climate models, OSBL turbulence ¢taeqilicitly simulated
currently andikely in the near futuréFox-Kemper et al2014 and2019 for the following
reasonsMostmodelsfor the realistic oceahave to beconfigured on grids thatrecoarsethan

the scale ofOSBL turbulencgtens of centimeters to meterEyven in asmalldomainsetting
wheremodelgrids could basfine as at a scale of metetiose modelsire based on hydrostatic
approximation that exclug®SBL turbulenceln addition to theabovementionedomputational
and physical limitations, numericalllzindcast/forecashodelsutilize finite volume or finite
difference schemes that diexible and efficient, bukess accurate than spectral methods used in
modelsto computeturbulenceln an idealized version dfindcast/forecasnodelthat neglects

the effect of horizontal processése effect of ocean surface boundary layer on prognostic

variables are calculated as follows,

1ol T 0aee (1)

whereC represents a tracer such as temperature and sadindy is vertical velocity Prime
indicates fluctuation associated with turbulence, and overbar means enragarhlged quantity

without signals of turbulenc&ubscript mixing denotes that this is thme tendency due only to

vertical turbulent mixing by OSBL turbulence. Other terms and their effect on the time tendency

are neglected for simplicity. Turbulefiuctuatiors, i,e., w6 a&a di n t he adamote
becalculated in hindcast and forecast modélseymustbe approximated usireveraged

variables, i.e.,8] and forcing conditios through a parameterization as follows,

Toa@e | 16l (1b)

whereKr are the vertical diffusivityandé ¢ is thecountergradient (or nosocal) term [e.g.,
Deardorff 1966]jn some parameterizations to account for tracer transport that is not inversely
related to the spatial gradient of the tracer. dtnentergradient term ismportant when coherent

structures, such as buoyardsrven convective cells and wadeiven Langmuir circulations, are

equa



84 dominant. Those coherent structures fill the whole ocean surface boundary layer, and tracer

85 transport is no leger local and unrelated to the local tracer gradient—%n, equation (1).

86 Parameters.e.,Kr, andé ¢, are deterministic functions of variables including surface forcing
87 conditions (wind, wave, and buoyancy fluahd water column conditiongheir treatment is
88 different in the two classes of commonly used phyba&sed mixing parameterization: In the
89 first-order parameterizations, such as thergfile Parameterization [e.g., Large et al. 1994], the
90 dependence of the parameterssarface focing and water column conditiomsdirect. In the
91 secondmoment parameterizationsy, andd ¢ arediagnosed from turbulence statistics such as
92 thekinetic energythe lengthscalesand the dissipation rate of turbuleribat are prognostically
93 calculated in the model [e.g., Kantha and Clayson 1994; Umlauf and Burchard 2003; Reichl and
94 Hallberg 2018]Thoseparameterizations usually work well for flows under one of the three
95 forcingconditions (wind, wave and buoyancy forcirig) the following two reasons: (iheories
96 exist for thevelocity scak of turbulencedriven by eaclof those forcing conditionfe.g., Belcher
97 et al . 2012; Dabdf2}tlze linoted @aumbea dfparane@rs id thgse
98 parameterizations atanedusing datafrom either field observations high-fidelity process
99 orientedcomputersimulations whenone of tke threeforcing conditions dominates exists
100 [e.g.,Harcourt 2015; Reichl et al02§. They are less accuratéen the three forcing
101 conditionsare similarly importanbr when the surface buoyancy flux is stabilizjegy.,Li et al.
102 2019] Howeverthe realistic ocean is usually under toenparablenfluence of all three forcing
103 conditions(Fig. 1a)or with surface buoyancy flux stabilizing the upper oogag. 1b). Biases in
104 the simulated uppearcean states using those parameterizations remain, degrading our
105 hindcasting/forecasting ability of thgperoceanstates, thenarineecosystemandthe coupling
106 of the oceanvith the atmosphere.g., Belcher et al. 2012].

107 Giventheaforementionedhallengesn traditional physicshasedOSBL mixing

108 parameterizationshis study explores the usemfchine learning, specifically,deep neural

109 network (DNN)model,to parameterize theertical mixingeffects of OSBL turbulence. In recent
110 years, machine learning techniguemat are datbasedhaveattracted attention in the

111 community ofatmosphericad oceanic sciencesd have beeimvestigated fodifferent

112 applicationssuch agnsemblaeveatherforecasting [e.g., Rasp and Lerch 2018], the

113 parameterization of convection in atmosphenodelge.g.,Brenowitz and Bretherton 2018;
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Gentine et al. 2018the coupling between tleceanand theatmosphereinder hurricanes [Jiang
et al. 2018] the parameterizatiofor ocean mesoscale edd{esy.,Bolton and Zanna 2019;
Zanna and Bolton 20204nd the predictiorof ocean currents frombservations [e.g., Liu and
Weisberg 2005] and satellite images [e.g., Zeng et al. 2015].

The specific objectives of the study are (1)rton aDNN modelto parameterizéhe mixing
effects of OSBL turbulence; (2) to compare the DNN model witkwtradtional physicsbased
parameterizationgsing a singleeolumn model; and (3) to explore the significance of different
forcing parameters using the DNN model. The rest of the paper is organized as. f6dotian

2 describes the DNN model and a few tramhtil deterministic parameterizations used for
comparisonSection 3 describes the data used to develop and evaluate the DNN®eatieh

4 presents and discusses model results; and Sécsimmmarizes the important conclusions and
discussegpossible future research directions

2. Model Description

2.1 A Physicsinformed Deep Neural Network modelffor the Vertical Mixing by Ocean
Surface Boundary Layer Turbulence

A feedforwardDeep Neural Network (DNN) model [e.g., Goodfellow et al. 2016] is used in this
study.As opposd to representing the vertical mixing effect by OSBL turbulence using
deterministic functioasuch agquation(1), aDNN modelprovides an effective and flexible
approximation of no#linearmapping betweeaninputlayer containing profiles of temperature
and salinity and forcing conditions aadoutput layer containing profiles of the time derivatives
of the variablesi.e., theleft-handside term in equation &L The profiles of the time derivative

of temperature and salinity are then used to prognostically calculate the profiles of temperature
and salinity like using a traditional physibased parameterizatio/e also experimentaasing

the profiles of turbulerfluxes, i.e., the righhandside term in equation 1(a), as output, and the
prognostic temperature and salinity profiles are the s&henput and output laysrare

connected by oner multiple hidden layers (Fig.3Assumethere are a total ¥l layers

including the inpufj = 1), hidden(j = 2 toM-1) and outpu{j = M) layers.The output of neuron

in layerj with N(j) neuronsi.e.,&;, is calculated using outmifrom the previous layer, i.e.,

@ as[Goodfellow et al. 2016
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where0 7 anddp; arethe weightand bias directing fromeuronk in layerj-1 to neuroni
in layerj, respectively; antlis the activation functiornlThe optimized set of weights and biases
aredetermined throughlearning procesdn other wordseach neuron represents a simple
operation defined by an activation function. The outpw@aah neuron is used as input to
neurons in the next layer in a feedforward DNN mo@glerations in each neuron collectively

contribute to the mappinfgom the input layer to the output layer

In additionto the set of weightand biasthere are a few Iperparameters the model, i.e.,
those predefined and not optimized during each leaincigding the activation function, the
loss function and the numberstofidenlayers and neurons. These hyperparameireselected
after then learning stagesingdata not used ithelearning The Leaky Rectified Linear Unit
(LeakyReLU,® @ | A It ) [e.g.,Mass et al. 2014pne of the popular ones in DNN
models,is used as the nonlinear activation functiothiis study It wasreported by Gentine et al.
[2018] that the LeakyReLdhow thebestperformanceamong a few activation functions. Our
own gnsitivity experimentalsoshowedthat the LeakyReLU results ihe fastest decrease in
both the training and validation losses over epochs and best final scores among a few activation
functions, includingRectified Linear Uni{ReLU), tangent hyperbolicé&nh andthe Sgmoid
(Yo p G ). The lossfunctionthat is used to gauge the performance of the trained
modelis defined as

QY6 ., 3
: @)

0 €1 i o Q@ | — 0 -
Qo

Q00 .,
Qo
WhereXgpredictionand Xiruth are the variables in the output layer and from the data (the LES
solutions in this study)yespectivelyHC andSCstand for watecolumn heat and salt content,
respectivelyandUis a constant set to 0.1 in this study. Tir& term on the righhandside of
equation (3) measures the deviation of the predicted results from th& liatsecondight-
handsideterm is a penalty when the predict violates heat and salt conservatiBanalizing

the loss when physical principles are violatedne of the popular approaches to add physical



168 constraint to a DNN modeWith the loss function, the trained DNN model not only best re

169 produces the data, but alsestabides by conservation laws.

170  To seek the optimized set Of jj and® nh that best mapariables in thenputlayerto

171 those inthe outpufayer, available data are first separated into three independent sets, a training
172 dataset, a validation set and a prediction (testing) set. The determination of the optimal set of

173 0 frz and®p; is formulated as a supervised learning problem revtiee main goal is to

174  minimize the loss function based on the training data set. The optimizationof and

175 ®p; s achieved by the stochastic gradient descent methods, which iteratively choose new
176 values ofd {7z and®y; to reduce the loss functiofihe learning process ispeated for

177 2,000 iterations, the parameters that result in the smg#estralization error of the model,
178 which is the loss estimated on a validation dataset that is independent of the trairirg set,
179 selectedSensitivity experiments with 4,000 iterationsreconducted to confirm that the

180 generalization error will not further decreadter 2,000 iterations

181 Thetraining of the DNN moddk conducted using the Python library TensorFlow
182  (http://www.tensorflow.orglandthe Python librarKeras(https://keras.ip(the computer code

183 can be accessed through the link in the acknowledgement sedisomg Nvidia GeForce RTX
184 2080 Ti GPU eachtraining and validatioprocesgakesabout 10 minutes to complete

185 A number oftestsusingthe DNN modelwith differentmodelhyperparameterand inputsare

186 reported in this papdimable 1).In the control simulation, thBNN model hadl hidden layer and
187 256neurons in théiddenlayer. The numbers of hidden layer and neuron result in the smallest
188 error and are selected by sensitivity experiments that systematically vary the two niinéers.
189 input layer includes profiles of temperature and salinity as well as forcing inchwihdgvector
190 surfacebuoyancy fluxthevertical profiles of the Stokes dréit the current time step) @nd the

191 previous time stept { o, with g = 30 minutes Here, The Stokes drift isvave-averaged

192 current associated with wave and drives wdkieen Langmuir turbulence when it interacts with
193 ocean currents [e.g., Craik and Leibovich 196 addition to the control simulatiotwo

194 groups ofsensitivity experiments are conductedlamde the input that constrigthe best

195 model Thefirst group ofsensitivityexperimentss devised to explore model performance under

196 different representatiaof surface wave forcing/Vhile the importance of wave forcing is


https://keras.io/

197 realized, how it is represented dif@én differentparameterizationfe.g., Li et al. 2019]In

198 addition to the control simulation where the vertical profile of the Stokes drift vector is used to
199 represent wave edtt, three sensitivitgxperimentsusingthe surface Stokes drift magnitude,

200 and the surface Stokes drift vegtarspectivelyare conductedrhe second group of sensitivity
201 experimentsin which the input layer includes forcing without histatyand that witha 1-hour

202 history ¢, tT g1, andt - 2 @, respectively, is designed to test the effect of forcing history on the

203 performance of mixing parameterizations.

204 2.2The General Ocean Turbulence Model (GOTM)

205 The performance of the DNN models is compared with conventional @88hg

206 parameterizations with deterministic formulas. #os purpose, the General Ocean Turbulence
207 Model (GOTM) [Burchard et al. 1999; Umlauf and Burchard 200%lauf et al. 2014is used.
208 The GOTM is a library and testbed of parameterizations for vertical mixing by OSBL

209 turbulence. It belongs to the singlelumnmodel that excludes the impacts of horizontal

210 processesThe GOTM includes several commonly used OSBking parameterizations. In this
211  study,two variants of the Kprofile parameterizations [KPP, Large et al. 1994] that is a popular
212 first-order model, inluding the KPRCVmix [e.g.,Large et al. 1994 et al. 2021; Van Roekel
213 etal. 2018]and theKPPLT-LF17[Li and FoxKemper 201}, areincluded in the comparisotit
214 is shown in Li et al. [2019] that the performance of KPRIFIL7 is similar to some othe

215 variants othe KPP including wave effects [e.g., van Roekel et al. 2012; Reichl et al. 20185].
216 KPP-CVMix is the KPP in the Community Ocean Vertical Mixing (CVMix) project [Griffies et
217 al. 2015] and is used in a few global ocean modeish as th@aallel Ocean Program Version
218 2[POP2; Smith et al. 20101t includes thamixing effects of wind and coolingdriven

219 turbulence, but not tseof wavedriven Langmuir circulationshe other KPP variant.e.,

220 KPPLT-LF17, includesthe effect of Langmuir turbulend¢eT) in the framework of KPP, by

221 enhancing both the magnitude of diffusivity and the entrainment at the base of the OSBL. They
222 differ in the forms of the enhancement factors for diffusivity and entrainment (See Li0di%l 2
223 for a detailed comparison of the three parameterizationagdition to the KPP, anothmpe of
224  commonly used parameterizatiorsesconémoment closurechemese.g., Harcourt 2015;

225 Kantha and Clayson 2004]. It was concludedi et al. [2019]thatthose schemes perform

226 similarly to the KPP, and therefore the comparison between the DNN model and different



227 variants othe KPPis representative of that betwetire databaseddNN model and traditional

228 physicsbasedparameterizations
229
230 3. Data Description

231 The data for training, validating, and testing the DNN madel for evaluating traditional

232 physicsbased parameterization in the GOHBKe turbulenceesolving solutions for Ocean

233  Station Pap&0°N 145°W) calculated using the National CenterAtmospheric Research

234  Large Eddy Simulation (NCARES) model [e.g., Sullivan et al. 199@he NCARLES model

235 has been extensively used to study OSBL turbulence driven by one or a combination of wind,
236 wave, and heating/cooling [e.&ullivan and McWillams 201Dand has been shown to

237 accurately reproduce in situ observations when the effect of OSBL turbulence dominates [e.qg.,
238 Liang et al. 2020]Solutions from LES models am@aditionallyused to derivghysicsbased

239 parameterizationwith deterministidormulasfor the effects of OSBL turbulence [e.Ghor et

240 al. 2021; Yang et al. 2015jnha et al. 2015; van Roekel et al. 2018] as they fully resolve OSBL
241 turbulence yet exclude all other larggmrale processe¥hose solutions are commonly used to

242 tune ancevaluate parameterizationsari-D model setting, such agthin the framework othe

243 GOTM [e.g., van Roekel et al. 2018; Li et al. 20Idje Ocean Station Papa, located at the

244  North Pacific subpolar gyre ~ (50°N 145°W, Fig),1s selected since continuous high

245 resolution measurements of physical and chemical states and fluxesnabatath sides of the

246 air-sea interfaces. Insights into physical and biogeochemical processes in the upper ocean have
247 been gained through the analysis of observation at the station and accompanying computer
248 simulations [e.g., Alford et al. 2012; Cronihad. 2015; Kaminski et al. 2021].

249  For this study, the NCARES model was run for about nine years, from September 2011 to

250 June 2019, during which higiesolution observations @find, wave, surface heat flux, and the

251 profiles of temperature and salinity.§., Cronin et al. 2015; Thomson et al. 2013] are available.
252 There is a period between fall 2017 and spring 2018 when the directional wave spectrum is not
253 available, and that period is excluded in the simulafitve. forcing conditions, includingind,

254 wave and surface buoyancy forcimgreapplieduniformly across horizontal locations of the

255 domain.The model was restarted every ten days. During each restsitt) profiles of

256 temperature and salinity were used as initial condittmngss horizontal locations of the domain
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A 6-hour simulation with constant forcing at the start of the perioded tesspin up the
turbulence field. Observed surface wind, wave, and surface heat flux were used as surface
forcing conditiors. Salinity flux is set to zero, although it was used in theldy simulation in
Liang et al. [2017], as the observation of préafjon at the station was sporadite forcing
conditions at this station during the myjgar simulation cover a wide range of meteorological
conditions that are representative of #attude oceanslurbulence is not predominantly
governed by onef three types, although the dominance of Langmuir turbulence is more
common than that of the other two types of turbulence. Compared to the OSBL turbulence of the
global ocean, OSBL turbulence at the station is more influenced bydvares Langmuir
turbulence and is much less influenced by buoyadigyen convective turbulence. Figures 2(a)
to 2(c) show the comparison between the LES solutions and observation. The model agrees
generally with the observations. Slight deviation of model solutions from tleevaiien is
expected as the LES model includes only OSBL turbulence and the effects frorstaiger
circulations, i.e., submesoscale, mesoscale, and-beai@ currents, are not excluded. It should
be noted that Liang et al. [2017] showed that the daB8model and configuration accurately
reproduce the physical and chemical environment in the OSBL duringlayljzeriod without
significant influence from processes other than OSBL turbulence. The exclusion of other
processes makes the LES solutions gapeverin situdata for the purpose of developing

OSBL mixing parameterizatiorf-or the study horizontally and temporally averaged
temperature, and salinity profiles were archiegdry half hourExcluding the first 12 hour of
each simulation, there are approximately 80,000 vertical profiles of temperature and salinity,
respectivelyAround 72%, 14.5% and 13.5% of the remaining solutions and the corresponding
forcing conditions were used for thr@ining, validation and testing of the DNN model,
respectively.

4. Results

4.1 Performance of the DNN model
The skill of the DNN model ifirst demonstrated by comparison of-ad&y runwith the LES
solutions, which are considered the truth, ettt solutions usinghe conventiongbhysics

basedparameterizationdNote that lhe performance assessmanthis section is based on the

10
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testing dataset from the LES solutions that is independent of the training and validating datasets
and is nousedfor the learning of the DNN moddtigure4 compares the prediction by the DNN
model and two different traditional parameterizations ((®RMMix and KPPLTVR12) fora 9

day period irDecembe”010. The wind is moderatat the beginning of the peripdith aspeed

10-m above the sea leval{o) around 10 m/¢Fig. 4a) The wind weakens tabout5 m/s at

around day 2, and slowly strengthensnore than 18n/s at around day. Two different forms

of Langmuir numbers, i.e., MSM97 [McWilliams et al. 199nAd VR12 [van Roekel et al.

2012], are plotted in Fig. 4b. There is no substantial difference between MSM97 and another
popul ar Langmuir number proposed by Harcourt
difference between VR12 and MSM97 is evident as VRitRides the effect of windiave mis
alignment, shows more variability than MSM®&angmuir number is mostlglose t00.3 during

most ofthe period, implying thexistence ofvavedriven Langmuir turbulence during the

period.It briefly goes above (below) 0.3 when the wind strengthens (weakens), implying the
dominance of wind(wave) driven turbulence during those momeritse net surface heat flux

cools the OSBland there ara few episodic rain events

The OSBL continuously cools and deepens during the pdtialdogets saltiewwhenhigh-
salinity water in the thermocline is entrained into the OSBL (Figsand4d). All three models
including the DNN model, the KPREVMix and the KPPLF17, capture the trends for mixed
layer depth, temperature and salinity in @®BL (Figs4e to 4). The predicted mixed layer
depth by the DNN model closely follows that by the LES moOe¢ predicted temperature in
the OSBL by theDNN modelis slightly cooler thathe truth (the LES solutions)nthe order of
0.1 °C(Fig. 4e). Traditional deterministic parameterizations, ilee two variants aothe KPP
mode| predicta substantially warmer mixed laydyy more than 1°QFigs.4g andd4i). Similar to
that for temperaturehe error for salinity is smaller for the DNN model than for the two
traditional parameterizatior{gigs.4f, 4h and4j). By comparing the mixed layer depth, it is
obvious that the two KPP modegisedicta mixed layer shallower than the truth while the mixed
layer depth diagnosed from the DNN solutions closely fadlthe truth.lt should be noted that
the KPRLF17, i.e., the KPP that includes waweluced mixing, does predictséightly deeper
cooler andsaltierOSBL than the KPEZVMix does. Tle differencebetween KPR.LF17 and
KPP-CVMix in our simulationgjualitativelyagrees wittFig. 2in Li et al. 2019].However, he

difference between KRPF17 and KPRCVMix is much smaller than that between the two and

11
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the truth, therefore is not evident in Fg.implying that including wave effect etraditional
physicsbasednodel still cannot matcthe truthas well agthe DNN modeboes Like over the

global ocean, the most common meteorological condition at the OSP is also when the three types
of turbulence are similarly important or when the surface buoyancy flux is stabilizing (Fig. 1).
Those are the coittbns when traditional physiesased parameterizatioeguggle[Li et al.

2019].

The skill of the DNN modeéor all prediction periodss evaluatedisingthe statisticsof errors
(Fig. 5). Both the mean anithe standard deviation of the erréos both temperature and salinity
are significantly smallefor the solutionsusing the DNN model thatmoseusing the two variants
of the KPP modeBoth KPRCVMix and KPPLF17 systematically predict warmer and fresher
OSBL while the mean error for both temperature and salinity using the DNN model is less
obvious.Thecomparison of model error statistiosnfirms that lhe databasedDNN modelon
averageoutperformghe two traditionaphysicsbasedparameterization®lthough the learning

of DNN model is not based on the testing dataseDNi model performs well athe forcing
conditionsin the testing dataset, i.e., the inputerlaps with thosen the training and validation
datasets in the parameter space shown in Fig. 1.

4.2 Discussion Based osensitivity Experiments

In this subsectiorthe sensitivity of the DNN model tmodel inputsijncludingthe forms of

wave forcingand the history of forcing is evaluatasing the Taylor diagrams (Fi),

respectivelyln the Taylor diagranthree matrices, vizhe mean absolute err(golid grey

lines), the root mean square erfsolid blacklines)and correlatiorfdashed black lines)

represering the error, the scattieig of the prediction and thesimilarity in pattern respectively

are presented in the same figuResults from the two traditional parameterizations are not

included in the comparison as the errors from those two models are much larger than those using
the DNN frameworklt should be nted that the optimal numbspf hidden layes and neurons

in each layearedifferent when input variables for DNN model aifetent (Table 1).

Sensitivity experiments by altering those hyperparameters (not shown) were conducted to select

those optimal numbers.

4.2.1Thelmportance of Stokes Drift Profile

12
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Thefirst group of sensitivityexperimentexamine thehoiceof waveforcing in model
performanceThosetwo tests include onasing surface Stokes drift without directional
information (green cross) and one using surface Stokes drift vector (blue TheSNN
modelswith surface Stokeas inputareused to mimig¢he input of commonly usedst-order
parameterization for Langmuir circulations, such as the-KIPEY [Li and FoxKemper 2017]

In those parameterizations turbulent Langmuir number that is a function of surface or near
surface Stokes dtis includedasa parameteto quantify the effects of wawdriven Langmuir
turbulenceThere area few variants of turbulent Langmuir numifea;) used in different
parameterizatiorHere, theDNN modelusing Stokes drift magnitude as an input corresponds to
parameterizatios|[e.g., McWilliams and Sullivan 2000king thela; originally defined in
McWilliams et al. [1997] The DNN model usin&tokes drift vector mimics parameterizations
[e.g.,van Roekekt al. 2012; Li and FeKemper 201} usingLa; that considers wingvave
misalignment [e.g., van Roekel et al. 2012]. Note that there is a third popular vatianthait
uses neasurface averaged Stokes drift instead of surface Stokes drift [e.gourtaanad
D6Asaro 2008].

The solution®f thetwo sensitivityexperimentdave larger errors thahoseof the control
simulation(Figs. 6aand 6l). The control simulatioffred dots)ut-performs thewo sensitivity
experimentgblue pluses and green crossesierms of root mean square error (RMSE) by more
than 5%, implying thatthe detailed Stokes drift profile better than surface Stokes drift in
representing the effect of wav@dis is expected, as the subsurface profile of Stokes drift is
complicated when both swell and wind wave are present [e.g., McWilliams et al. 2014; Breivik
and Christensen 2020] and tihetailed profile is important in determining theduction of

turbulent kinetic energy in the OSBL.
4.2.2The Importanceof Forcing History

The second group of sensitivity experiments are designed to test an important assumption in
first-order OSBL turbulence parameterizations such as the KPP. In those parameterizations,
forcing conditions at the current time step are used and the underdgimgption is that OSBL
turbulence and its mixing effect are always in equilibrium with surface forcing conditions (wind,
wave and surface buoyancy flux). Over much of the global ocean, however, surface forcing

conditions are always changing associated atithospheric variability aheweather and
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377 climatic scales. Consequently, OSBL turbulence and its mixing effect are seldom in equilibrium
378 with forcing conditionslt has never been evaluated how signifidhe effect of forcing history
379 is.

380 The length othe forcing historycould be decidetly considering théllowing scaling: he

381 velocity scale of ocean surface boundary layer turbulence at mild to moderate forel@g is

382 m/s (1 cm/s), and the vertical scale of ocean surface boundary layer in most of the global ocean
383 is ~10m, so the eddy turnover time and the turbulence response time saatdhraerder of

384 10°s.In arecent study by Wang and Kukulka [2021] where B8 imodel is driven by an

385 abruptly changing wind, it is shown that turbulence response time is at a st@les@tonds

386 since the wind abruptly changdirection.With that consideratiorga 33minute history of

387 forcing conditiongbotht andt - gqi with gqi = 30 minuteyis used as input in the control

388 simulationand in the first group of sensitivisxperiments

389 Comparisons of errors in tlentrol simulatiordriven by a 3éminute history of forcingred
390 dots)and thesensitivity experimendriven byforcing conditionswvithout history(yellow

391 triangleg mimicking firstorder parameterizatior{gigs. 6a andob) show that the control

392 simulations perform bettdry more than 8% in terms 0RMSE Another sensitivityexperiment
393 driven byaonehour history of forcing condition@urple squares)ields similar resultsas the
394 control simulatiorandout-perforns the sensitivityexperimendriven by forcing conditions
395 without history Therefore, including the history forcing in OSBL mixing parameterizations

396 improve the prediction of upp@cean states.
397
398 5. Summary and Future Research Directions

399 In this studyadeep neural networ©NN) modelthat is a type of machine learning mottel

400 the effect of ocean surface boundary layer (O8Btbulence is trained usingy@ar process

401 oriented numerical solutions for the Ocean Station Papa (OSP) that is at the deapidlar

402 Ocean.Computer code for training the DNN model is available through a link in the

403 acknowledgement sectionhe DNN model is evaluated and compared against two popular
404 traditional physicdased parameterizations using deterministic formulastwe yariants of the
405 K-Profile Parameterizations (KPP) including the KBYPMix [e.g., Large et al. 1994; Griffies et
406 al. 2015]and the KPR.F17[Li and FoxKemper 2017]It is also used to investigate the choice
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407 of forcing conditions in parameterizations f0SBL turbulencelmportant conclusiontom the

408 resultsare:

409 (1) Thedatabasedmnachine learning model, viz. tiplysicsinformeddeep neural network
410 (DNN) model outperform$wo populartraditionalphysicsbasedarameterizations,

411 namely, theKPP-CVMix andthe KPP-LF17.

412 (2) Including wave forcing improves the performance of the DNN mddwed.use of a

413 Stokes drift profilas superior tadhe use of surface Stokes drift.

414 (3) Including a 3éminute or thourhistory of forcing conditions as inptdr the DNN model
415 improves the prediction over the use of forcompditionswithout any history

416  While the profiles of Stokes drift and the history of forcing are not indirder

417 paameterizations like the KPP, they are inherently in secoddr closures [e.g., Umlauf and

418 Burchard 2003 and 2005; Kantha and Clayson 2004; Harcourt 28 Eglcondorder closures

419 turbulent characteristics, such as its intensity, dissipation rate and length scale, is prognostically
420 calculatedusing equations that includes the vertical profile of the Stokesaddfthe history of

421  forcing is retained during time integration.

422  Our study shows the promise of a DNN model floe parameterizationf vertical mixing in the

423 OSBL In this studythe DNN modelvas trained and testédr conditionsat Ocean Station Papa
424  that isrepresentativef conditions at thenid latitude The model shodl be applicable teegions

425 under forcing conditionwithin the parameter space shown in Figs) &6d 1b). Before the

426 application of the trained DNN model to a region, forcing conditions in that region need to be
427 examined to ensure that they are within the parameter space of the trainifguata.1@) and

428 1(b) also show that the training data stiliss ®meturbulenceregimes, most notably convective
429 turbulencen deepmixed layerghatis typical at high latitudeand strongly heated boundary

430 layer that is at the tropical regiori&rocessoriented solutions from the Large Eddy Simulation
431 modelat a vari¢y of geographic locationsuch aghose at the Southern Ocean [e.g., Large et al.
432 2019] in the tropics and in other ocean regiareed to be included thetrainingand validation
433 datasetto expandheparameter space that ttieinedDNN model cartackle Recently, LES

434  simulations fothe ocean under realistic hurricane conditions are also available [e.g., Rabe et al.
435 2015; Liang et al. 2020]. If those data are added to the training and validation datasets, the

436 trained DNN model will alstve used fotheocean under those extreme conditidfieally,
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while the current study tests the DNN model in a shoglemn modeivhich is an idealized
version of a hindcasting/forecasting ocean moiglire research will implemettte DNN
modelin hindcast/forecasiceanmodels and test ih regional and global ocear@@ur ongoing
efforts to implement the DNN model in the CouplédeanAtmosphereWNave Sediment
transport (COAWST) model [Warner et al. 2010] and test it in a cowgaedrwave
configuration for the Gulf of Mexico [Abolfazli et al. 2020] will be reported in a future

manuscript.
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Table 1.Sensitivity experiments using tilENN model described in Section 3. Undlee third
columniiforcing conditions: U1 is the wind at 10 meter above the sea leB@= 0) is the

surface buoyancy fluwY & mPis thesurfaceStokes driftvector, and™Y & 1 is the

magnitude of theurface Stokes drift

Figure 1. ) Regime diagranfor mixing in theocean surface boundary layenen surface
buoyancy flux igdestabilizingBelcher et al. 2012 and Li et al. 201%he thick blacklines
encompasparameter space where one of the three types of turbulence domihatésin black
lines are contourfor the probability(30%, 60%, 90% and 99%f a certain parameter
combination in the global ocean. The thedllines are contours for the probabil{§0%, 60%,
90% and 99%dpf a certain parameter combination at ocean station (S8@pa 145°W) The grey
scattered circles aredividual data pointrom observations at OSkE) same asd) except

when surface buoyancy flux is stabilizirf{g) Geographic location of Ocean Station Papa (OSP).
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Figure 2. Theomparison of mixed layer depth)(mixed layer temperatur®)( and mixed layer

salinity () betweerthe LES solutions an¢h situ observation, respectively

Figure 3.Thearchitect of the Deep Neural Network (DNN) model.

Figure4. Meteorological conditions and solutions during a 9 day period startingDearr 9"
2010. (a) Wind speed at 1t above sea levelgo) andturbulent Langmuir numbdt.a;) based

on formulas by McWilliams et al. [1997] (MSM97) and van Roekel et al. [2012] (VR12).
Dashed line in the panel indicates £&.3, below which turbulence is dominated by wave
driven Langmuir turbulencéb) surface heat flux and evaporation minuscypitation;(c) and

(d) the simulategbrofiles oftemperature and salinity using the LES model (truth), respectively.
(e) and (fitheerror of simulated temperature and salinity by the Deep Neural Network (DNN)
model, respectivelyhere,error isdefined as difference from the LES solutiphs., E(X) = Xpnn

- Xeruth)- (@) and(h) the error of the simulated temperature and salinity profiles using the KPP
CVmix model Large et al. 1994; Li et al. 20RXi) and (j) the error of the simulated temaierre
and salinity profiles using the KPEF17 model [Li and FosKemper 2017].

Figure5. (a) to (c): the mean of modeled temperature errors by the DNN, th«<CKRRX [e.g.,
Large et al. 19944nd the KPR_F17[Li and FoxKemper 2017]respectively’C ™
—-B C™ , whereE(X) = Xmodel- Xruth With the LES solutions considered the truth and N is the

number of records); (d) to (f) the standard deviation of model errors by the DNN, the KPP

CVMix and theKPP-LF17, respectively, - B C™ C™ ). (g)to(i): same as

panels (a) to (c), but for salinity. (j) to (I): same as panels (d) to (f), but for salinity.
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Figure6. Taylor diagram for the rate of change of temperafpaeel aandsalinity (panel b)in
the OSBL, respectivelyThe solid grey linessolid black lines, and dashed black liaes

contours ofiormalizedroot meansquareerror’Y 0 "Y'O

-B O ¥ - B 0 0  withFthe prediction by the DNKodel andD the

truth (LES solutions)normalized standard deviatign

B O O B 0 0 ,andcorrelatio® ¢ i

B'O OO0 0 B'O OBU U0 ,respectively.

Simulation The combination of Forcing conditions Length of
name Neuron and hiddelayer forcing
condition
Control 256x1 Yo & m,Y oP 30-min (t andt -
simulation ad)
Sensitivity [128 x 1, 256 x 1] Yoo & n,[Y & nB |30min(tandt-
Experimentl Y oa mh od)
Sensitivity | 128x 1 (no history 256 Yo & m,Y oP [no history 1),
Experiment2 x 1 (1-hour history 1-hour ¢, t7 qd,
t- 201)]
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